The stress-activated mitogen-activated protein kinase signaling cascade promotes exit from mitosis.

نویسندگان

  • Vladimír Reiser
  • Katharine E D'Aquino
  • Ly-Sha Ee
  • Angelika Amon
چکیده

In budding yeast, a signaling network known as the mitotic exit network (MEN) triggers exit from mitosis. We find that hypertonic stress allows MEN mutants to exit from mitosis in a manner dependent on the high osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase cascade. The HOG pathway drives exit from mitosis in MEN mutants by promoting the activation of the MEN effector, the protein phosphatase Cdc14. Activation of Cdc14 depends on the Cdc14 early anaphase release network, a group of proteins that functions in parallel to the MEN to promote Cdc14 function. Notably, exit from mitosis is promoted by the signaling branch defined by the Sho1 osmosensing system, but not by the Sln1 osmosensor of the HOG pathway. Our results suggest that the stress MAP kinase pathway mobilizes programs to promote completion of the cell cycle and entry into G1 under unfavorable conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants.

Despite the recognition of H(2)O(2) as a central signaling molecule in stress and wounding responses, pathogen defense, and regulation of cell cycle and cell death, little is known about how the H(2)O(2) signal is perceived and transduced in plant cells. We report here that H(2)O(2) is a potent activator of mitogen-activated protein kinases (MAPKs) in Arabidopsis leaf cells. Using epitope taggi...

متن کامل

Response regulator–mediated MAPKKK heteromer promotes stress signaling to the Spc1 MAPK in fission yeast

The Spc1 mitogen-activated protein kinase (MAPK) cascade in fission yeast is activated by two MAPK kinase kinase (MAPKKK) paralogues, Wis4 and Win1, in response to multiple forms of environmental stress. Previous studies identified Mcs4, a "response regulator" protein that associates with the MAPKKKs and receives peroxide stress signals by phosphorelay from the Mak2/Mak3 sensor histidine kinase...

متن کامل

Mcs 4 Mitotic Catastrophe Suppressor Regulates the Fission Yeast Cell Cycle through the Wikl - Wisl - Spcl Kinase Cascade

Spcl in Schizosaccharomyces pombe is a member of the stress-activated protein kinase family, an evolutionary conserved subfamily of mitogen-activated protein kinases (MAPKs). Spcl is activated by a MAPK kinase homologue, Wisl, and negatively regulated by Pypl and Pyp2 tyrosine phosphatases. Mutations in the spcl ± and wisl genes cause a G2 cell cycle delay that is exacerbated during stress. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 2006